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A1IItnct-The response and stability of elastoplastic circular pipes under combilled bendiDa and external
pressure are investipted both analytically as well as experimentally. A virtual work approaeb is used to
formulate the problem. which results in a set of nonlinear alaebraic equations which are solved numerically.
The maximum moment and curvature for dilerent pressures are determined as a function of the material
and geometric parameters of the problem. For the range of parameters where limit load instability
dominates, the results compare very well with experimental results for both steel and aluminium pipes.

NOTATION

a., b.. c.' d. displacement coefficients
D tube mean diameter
E Young's Modulus

E, secant modulus
k number of intearation points in /I direction
I number of integration points in z direction

M bending moment
M..' elastic limit moment

N number of terms in series expansions
n strain hardening parameter
P pressure

Pc bucklina pressure
R tube radius (=a2)
t tube thickness

U strain energy
V potential energy
W work done

.., II, \II displacements
x axial coordinate
z distance from tube midsurface
f strain

fO' ft strains in x, /I directions
f,o, f,o midsurface strains

( distance from cross section neutral axis
/I circumferential coordinate
K curvature of tube

K..' elastic limit curvature
K, curvature in /I direction

1/ Poisson's ratio
1/, inelastic Poisson's ratio
(I stress

(I, equivalent stress
(I..' stress at elastic limit load [=O.367(E/v'(l_1/2))(tIR)]

(1o yield stress
(IX' (I, stresses in x. /I direction

INTRODUCTION

The response and stability of long circular tubes under pure bending was first analyzed by
Brazier[l] in 1927. He pointed out that due to ovalization of the cross section, a limit point type
of instability develops which bounds the maximum allowable applied bending moment. More
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precise formulation of the same problem by Reissner and Weinitschke [2,3] yielded small
difterences from the Brazier solution. Kogakusi[4] extended Brazier's work to the case of
combined bending and external pressure and verified the well known empirical interaction
expression

(1)

As bas been shown by many investiptors[5-9] a bifurcation type of failure can many times
also occur before tile limit load is reached. For short elastic cylinders this approaches the
bucklina stress of cylindrical shells under axial compression. For longer cylinders the critical
value is much closer to the one obtained by the Brazier analysis due to the Brazier effect
(ovaJlina of cross section).

Modem eJIIineering applications such as offshore pipelines, risers, platforms, Iandbased
pipelines, breeder reactor tubular components, etc., all have diameter to thickness ratios
15 <U t <80. In such cases plastic elects can not be nqlected. Both bifurcation as well as
limit load failures are apia possible. Ades{10] was able to obtain the limit point of elutoplastic
long tubes in pure bendiDa by assUlllina that the cross section ovalizedalways into aa elliptical
cross section. More recently Refs. [11] and [12] dealt with variations of the same problem.
Gellin{13] presented an elepnt solution to the limit load problem and quoted results indicating
that bifun:atioD can SOIIletimes occur. The dilereDce between the results obtained from the
bifurcation analysis and those obtained from the limit load analysis is more pronounced in the
case of the critical curvature than for the critical moment.

In many engineering applications, like those mentioned above, long circular cylindrical pipes
are acted upon by both bending and pressure. This paper presents a numerical solution fer the
response of elastoplastic pipes under the action of combined bendina and pressure. The
solution method is similar to that of Ref. [13] with noted difterences in the kinematics as well as
in the solution algorithm. Deformation plasticity theory is used to accomodate the inelastic
material behavior. The principle of virtual work is used to derive the necessary equilibrium
equations. Interaction stability boundaries based on the limit point are developed and their
parametric dependence is examined. Experimental results for combined load experiments are
briefly described (see Ref. [14] for more details) and compared with the numerical results.

FORMULATION OF THE PROBLEM

(a) KiII,matics
Consider a long circular tube of mean radius R and thickness t acted upon by a uniform

bending moment M and external pressure P. Let the resultant curvature be IC (Fis. 1). The
displacements in the axial, circumferential and r:adial directions are 14 v and w respectively.

First consider deformations of the pipe cross section (Fis. 2). The strains will be assumed. to
be small and an intermediate class of deformations will be considered such that the centroidal
surface of the cross section remains inextensional. In addition, the usual assumption that
normals to the centroidal axis remain normal will be adopted. The circumferential strain of the
deformed cross section can be expressed as

(2)

where ~o and IC, can be shown to be [15]:

0= (VI + W) ! (VI + W)2 ! (V - WI)2
E, R +2 R +2 R t,

1 (VI - W")/ I( (V - WI)2)IC'=R -R- V 1-~ .

t( y=( ),.
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Fig. 1. Problem aeometry.

For small strains and small rotations

F'". 2. Circumferential element before and after deformation.

o (V'+W)+1(V-W')2
E,"'" R 2 R •

1 (11/- W")
I(''''''R~'

Inextensionality of the centroidal surface then requires that

(V/+ W) 1(v- W')2--r- +2 --r- =o.

Variations of the longitudinal strain through the thickness will be neJ1ectecl. thus

(3)

(4)

(5)

Apin. plane surfaces normal to the tube axis remain plane and normal during deformation.
From geometry,

(= [(R + w) sin 8+ v cos 9]

and

Ex =-[(R + w) sin 6+ II cos 6]1(. (6)

(b) Constitutive behaviour
Due to the proportional (approximately) nature of the stresses in the problem. the defor

mation theory of plasticity will be used to simplify the solution considerably. For the plane
stress case. the stress-strain relations reduce to

E
(T, =~l [Et + V,Ex ].

- V,
(7)

where E, is the secand modulus and Vs =0/2) +(ElE)(v- 1/2).
Experimental stress-strain curves have been approximated usins the Ramberg-Osgood
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relation given by

For plane stress state, (8) leads to

S. KYlUAKIDES and P. K. SHAW

(8)

(9)

where 0'" the equivalent stress, is given by

(2), (5) and (7) give

From St. Venant's theory of bending, ~,o due to bending is given by

thus

(10)

(1J)

(c) Principle of virtual work
The problem to be solved is as follows. For a given tube geometry, specified by the radius R

and thickness t, and for a given material specified by E, 0'0 and n, let the curvature /( and
pressure P be prescribed; it is required to find the moment needed to keep it in equilibrium. The
principle of virtual work in a Rayleigh-Ritz like procedure wilJ be used to solve the problem.
From the principle of virtual work, the equilibrium position is given by

8V=8U- 8W=0

where

and

8W=-8{PRr"'[ w+ 2k(V2 -2vw,+w2)]dB}t

= -PR r'" [( I +j)8w+ (v ~1t/')8V -j 8W'] dB.

(12)

(13)

tThis expression for DU is in agreement with the Ades{lOI formulation but with v, = 11/2) +(E,/ E)( v - 1/2) instead of
v, = (1/2).

tSee Ref. (15) for derivation.
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8U and 8W represent the change in strain energy and work done by the external pressure, per
unit length of the deformed tube.

NUMERICAL SOLUTION

The deformation of the tube cross section is assumed to be doubly symmetric and the
displacements v and ware approximated by

N

W = R ~ aft cos 2n8,
ft-O

For algebraic convenience let

N

V =R ~ bft sin 2n8.
ft-I

(14)

(V' +W) N (V - W') N-r = ~o Cft cos 2n8 &. -r =~l dft sin 2118,

thus

_ 2nd~ - Cft d b _ 2ncft - dft
aft - 4n _ 1 an ft - 4n2- 1

Substituting OS) in the inextensionality condition (4), Cft can be expressed as

1 (N 2)cO=-4 ~I dft ,

1 (N-l )
Cl =-2 ~l dftdft +1 ,

1 (N-; ) 1(;-1 )
Cj =- 2 ~l dftdft +i +4 ~I d"dj - ft

where terms higher than N are truncated. From (3), (S), and OS)

1 N

K8 = Ii ~1 2nd" cos 2n8

and

Ex
O= -KR [0 +co)sin 8+f [a"(8)d,, +~,,(8)C,,]J

ft-I

where

a,,(8) =411t 1(211 sin 8 cos 2118 - sin 2n8 cos 8)

and

13ft (8) = 411 l_ 1(211 cos 8 sin 2n8 - sin 8 cos 2n8).

(1S)

(6)

(17)
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From (12), (13), (14), (15) and (17)
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N ac] Er I [N ] }+ I 13N(8) "dN +~1-1P I 2ndNcos 2n8 2i cos 2i8 dz d8
N-I u / II, N-l

(18)

Integration over 8 and z is carried out numerically using Gaussian Quadrature. The domain is
divided into k by 1intearation points in the 8 and z directions respectively (see Fig. 3). A rule
of thumb has been to keep k> N. The results were not very sensitive to the value of I. After
integration (18) reduce to

N

I [j,(g) - g/(g)]&1/ =0;
I-I

thus

~(4) =//(4) - g,(4) =0 i E [1, N]. (19)

(19) are a set of N nonlinear algebraic equations in terms of the unknown coefficient do They
are solved numerically using Newton's method.

The elastic solution developed by Brazier[l] is used as the first approximation in order to
start the propam. Subsequently, as IC is increased the solution at IC; is used as initial
approximation for IC/+l' A second Newton's method is nested in the first one in order to find
values of E, and II, for each new set of strains found.

After the coefficients are found the moment is calculated by integrating along the circum
ference the midsurface stress as follows:

From (6)

R 12
"M=-t E,E/d8.

IC 0

Fig. 3. Cross section quadrant with integration points.

(20)
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COMBINED LOADING EXPERIMENTS

A combined bendm, and external pressure test facility was developedt and used to carry
out a number of experiments on tubes. The facility consists of a pure bendina device which
slides into a pressure tank and can be operated remotely while under external pressure. Figure 4
shows a schematic representation of the bendiq device. It consists of two pairs of sprockets,
about 9 in. (O.239m) in diameter, symmetrically placed, about 36 in. (0.91 m) apart, on a heavy
beam frame. The sprockets support two rollers which apply point loads in the form of a couple
at each end of the test specimen. Heavy chains runnina over the sprockets are connected
through a load cell and a hydraulic cylinder as shown in the figure. Rotation of the sprockets
can be achieved by contracting the hydraulic cylinder. A specially designed hydraulic system is
used for this purpose. The tension in the chains, measured by the load cell, is directly
proportional to the applied bending moment.

The rotation of each sprocket is measured independently by a separate LVDT. The two
signals are electronically added and the resultant voltage output is directly related to the
curvature. (Note that this is a pure bendina device so the curvature is constant alona the length
of the test specimen.) The specimen has freedom of movement in the axial direction due to the
roller type end supports; thus no axial loads are transferred to the specimen.

The bendiq device was designed as a "rigid" machine, as far as the specimen is concerned.
The energy absorbed by the device is less than 5% of the maximum energy stored in the
deformed pipe. This type of design was chosen in order to reduce the effect the device has on
the post buckliq behavior of the pipe which was one of the subjects of interest in the
experimental study undertaken (see Ref. (14]). The device is capable of applyina moments up to
10,000 in.lb (57.1 Nm). Tubes havina diameters from 0.75-1.5 in. (19-38 mm) and lengths from
25 50 in. (0.6-1.5 m) can be tested.

The bending device loaded with the test specimen slides into the pressure tank for
simultaneous application of external pressure (Fia. 5). The tank bas a diameter of 18 in. (0.46 m)
and working pressure of 800psi (55.2 bar). It can be pressurized by water, air or partially filled
with ~ater and pressurized by air. The bendiq device can be remotely controlled from outside
the tank. The LVOT's, load cell and their respective wiriq systems are hermetically sealed and
can operate under biab water pressure. A more detailed description of the test facility, its
calibration as well as the experimental procedure followed, can be found in Ref. [14].

In all experiments presented, aluminum 6061-T6 tubes of nominal lengths of 29 in. (0.74m)
were used. Pressure was applied first and then the tube was gradually bent. The signals from
the load cell, LVDT's and pressure transducer were recorded on a common time base. The
recorded signals were easily reduced to the required moment, curvature and pressure
measurements. A tube buckled under pure bendina is shown in Fig. 6. It is characterized by one
clear crosswise dent. The bucklina deformation is restricted to a length of about 10 tube
diameters. For combined loadina, the damage has the same geometric characteristics but for
pressures higher than the Propagation Pressure[16] of the tube, the possibility exists that a
propagating buckle will occur. Such a buckle is initiated from the bending buckle and then
driven by the external pressure to ftatten the whole length of tube.

Hydraulic Cylinder

Sprock.t
~4~~~------~~~.,L...-,h

Fig. 4. Pure moment bendilll device.

tThe facility was develop while the first author served as a Research Fellow at the California Institute of Technology.
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Fig. S. CombiDcd bendinl-Pressure test facility.

F"JI. 6. Tube buckled under pure bending (at .. 304.71, AI-606I-T6).

RESULTS AND DISCUSSION

(a) Elastic case
The linearly elastic case can be treated as a special case of the more general nonlinear

inelastic case described above. The material properties become constant through the thickness.
Thus E. and p. are replaced with E and P. The need of the second iteration to find E. no longer
exists. To improve the efficiency of the computation a simplified algorithm was used for the
elastic case where the nested iteration was avoided and the integration through the thickness
was carried out in closed form. Six integration points were taken in the (} direction (i.e. k = 6). After
a number of tries it was found that four term expansions of the displacements (i.e. N = 4)
produced sufficient accuracy.

The solution procedure was as follows. Th~ curvature (I() and pressure (P) were prescribed
for each cycle. The algorithm usually converged in 3-4 iterations. The convergence criteria
were 11F;(¢")~I:s; 10-4

• The curvature was gradually incremented each time finding the cor
responding moment. This continued until the moment decreased with an increase in curvature,
indicating that the limit point was passed. The curvature was then bisected and the new moment
was compared with the previous largest value. This procedure was continued until an accuracy
of 0.5% for the limit curvature was achieved.

Figure 7 shows the moment curvature response of an elastic tube for different values of
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FiB. 7. Moment curvature response for different pressures (elastic case).

pressure. The moment and curvature are normalized by the limit point values obtained by
Brazier[1].

i.e. M. e 2y2 E R 2 (21)
III = -9- 1f' YO _ p2) t,

and

e y2 1 t
(21)

Kill = T YO - p2) Ji2'

External pressure (P) is defined as positive and is normalized by the buckling pressure (Pc)
of a long elastic tube given by

(22)

Brazier only considered the case of zero pressure. His results are also plotted on the same
figure. At the limit point of the zero pressure case

M K
II e =0.950 and -e=0.957.
lnlll Kill

The small difference is mainly due to the more accurate representation of the strains in the
present analysis through the nonlinear relation (3); it also serves as a strong reassurance as to
the dependability of the Brazier solution.

The results from Fig. 4 of [9] are also plotted on the same figure. Very little difference is
observed in all the results except those for high external pressure. The limit loads were
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calculated for difterent pressures and the results are plotted in Fig. 8. Expression (1) is also
included on the same plot together with the results from [9]. At low values of pressure all three
sets of results are very close. For values of pressure (P/Pc) > 0.7 the solution of [9] deviates
considerably. It should be noted that both solutions can not predict the buckling load of a tube
under external pressure and zero moment. However for small values of moment this point can
be approached very closely by the present solution. The results of [9] seem to imply a
substantial increase in the bucklina load due to the application of a small bending moment. This
is intuitively unacceptable.

Again it can be concluded that provided correct values for M",e and Pc are known,
expression (I) gives a very good approximation to the stability interaction curve. This result is
independent of at. However it must be noted tbat for a range of at bifurcation will occur
before the limit load is reached. This subject is further discussed in [9].

(b) Inelastic case
For the inelastic case the Ramberg-Osgood approximation for the stress-strain relationship

of the material was used. Its use allows direct representation of the curve by only three
parameters. This was particularly helpful in the parametric study of the limit point that was one
of the objectives of this study. In addition good fit of the actual u - E curves of the materials
used in the experiment was achieved. The u - E behavior was assumed to be the same in
tension and compression.

As in the elastic case it was apin found that a four term (N =4) series expansion of the
displacements was adequate. Six integration points were taken throuah the thickness and six in
the fJ direction (k =I =6). The conveqence criteria were the same as in the elastic easel The
solution procedure was also the same.

The case of pure bending of thin elastoplastic tubes was treated in some detail in [13]. A
number of spot checks were run and the results were compared with those of FilS. 2 and 3 of
[13]. No visible difterence between the two sets of results was observed. Since in the case of
the above reference the exact representation for tbe strains E,o and /(,0 was used, it can' be
concluded that the approximations made in the present analysis by adopting venions (3) for
these quantities. was justified and helped in increasing the efficiency of the algorithm.

As mentioned earlier, Ades[lO] carried out a similar type of analysis for the pure bending
case but he used the assumption that the cross section deforms into an ellipse. A number of
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Fig. 8. Moment-pressure interaction stability diagram for elastic case.
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comparative runs were made for the cases presented in Fig. 6 of [10]. The maximum difference
found was less than 5%. This suggests that Ades' assumption is acceptable (at least for the
range of parameters he considered).

For the case of combined loading, the pressure was prescribed and the curvature was
gradually increased until the limit point was reached. At first a set of cases were run using the
parameters of the tubes tested experimentally. Some representative results are shown in Fig. 9
together with the experimental results. Some difference is noticed especially in the critical
moment where the experimental results are S-IO% lower than the ones predicted by theory. The
limit curvature is closer to the experimental results but is again overestimated by theory.
Experiments were also run where the moment was applied first followed by gradual application
of the pressure until buckling occurred. No noticeable difference was observed in the two sets
of results.

The limit moment normalized by the elastic limit moment (M",e) is plotted vs the pressure in
Fig. 10. The results from 25 experiments are also included. Aluminum 6061-T6 tubes were used
in all experiments. The tube nominal diameter was 1.250 in. and the thickness 0.035 in. The
stress-strain curve obtained from a longitudinal specimen cut out of one of the tested tubes was
fitted using the Ramberg-Osgood approximation and the parameters Oisted in Fig. 10) were
used as input to the algorithm.

For offshore pipeline applications the curvature is a preferred parameter because it is one of
the parameters controlled in the laying operation. Due to this, the critical curvature is also
plotted vs the pressure in Fig. 11 for the same parameters. The experimental results are also
included in the same figure. In both cases the theoretical results overestimate those obtained
from experiments. The biggest discrepancy seems to occur for higher pressures. Some scatter is
also observed in the experimental results.

One factor that could generate the observed difference between experimental and theoreti
cal results is the presence of initial imperfections in the tubes tested. These manifest them
selves in the form of geometric imperfections as well as material property nonuniformities
although the latter are less important. Gellin [17] showed that as in the case of an elastic
material, the buckling load of an axially loaded inelastic cylindrical shell is greatly reduced by
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Fig. 9. Moment-curvature response for different pressures. Comparison between theory and experiments.



S. KYRIAKIDES and P. K. SHAW

1.0
G>

P
Pc
t .8

.6

.4

.2

G> Ellperi.....
- Theory

~-34.71

""-4.3 IlI0-3(AI-606I-T61

n - 315•

O;-------r-----..,...--~~..L._,r__---
.1 .2

F't&- to. Moment-pressure interaction. comparison between theory and experiments.

-;;
t .8

.6

.4

.2

G> Ellperimlllt.
- Th4lOry

Jt- 34.7\

~ - 4.3 I lo-Slw _6OII_Tea

n - 3l5•

o-+-----r----.,....----r---..,...-&-..,..-e.........,---,.
.1 .2 .3 .4 .15 :6 .7

-K/K'
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the presence of initial imperfections. Their effect in the case of this problem has yet to be
quantified but due to the close relationship between the two problems this is bound to be
significant.

The observed scatter in the experimental results is also due to differences in both material
(E =107 :!: 0.5 X 107

• 0"0 =43 x loJ +5 x loJ. -2 x toJ) as well as the geometry (e.g. t =0.035:!:
0.001 in. D =1.250:!:O.005 in) of the tubes tested. These variations could not be normalized out
for the way the results are presented. Other sources of error such as in calibration of
instruments. the exact estimation of the tube affected length in the experiments as well as the
usual human errors are thought to have also contributed (but not significantly) to the observed
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difference. It must be emphasized that the theoretical predictions originate from a limit load
type of analysis. As mentioned earlier the possibility of bifurcation type of failure, occurring
before the limit load is reached still exists. Close examination of the experimental moment
curvature response at zero pressure (Fig. 9) leads to the conclusion that the tested pipe buckled
at its limit load. For higher pressures the situation is not as clear. In any case, due to the nature
of the response curve, premature bifurcation would not affect the critical moment by very much
but would affect the critical curvature drastically. In this case the difference between the
theoretically predicted results and those of the experiments is of equal magnitude for both the
moment and curvature indicating that perhaps the difference is not due to premature bifurcation
but due to other factors like the ones cited above. A separate analysis finding the interaction
bifurcation load is necessary in order to establish when bifurcation occurs first.

Similar experiments, but using steel pipes, are also presented in Ref. [18] for Dft =40, 60
and 80. Using their parameters, theoretical predictions were obtained through the present
analysis. These experimental results are plotted with the theoretical predictions obtained, in
Fig. 12. The comparison is very good for Dlt =40 and gets progressively worse for Ut =60 and
80. The same reference also estimates that for such tubes bifurcation type failure dominates the
behaviour for DIt > 50 whereas for DIt < 50 the limit load is reached first. This is in agreement
with the comparison made in Fig. 12.

From all the above it can be concluded that the presented analysis represents a successful
estimation of the limit loads of tubes under combined pressure and bending. One further
measurement made experimentally was that of the change in diameter of the tube as the
moment is increased. The case of pure moment is shown in Fig. 13 compared to the theoretical
prediction. Although lower, the experimental results compare well with the theoretical ones.
The influence of ovalization in both the elastic as well as the inelastic case must be emphasized.
Ovalization is what actually leads to the observed nonlinear behaviour and eventually to the
limit load type of instability. Even if bifurcation occurs first the load at bifurcation is very much
affected by the nonlinear nature of the moment-curvature response in all but for very shoft
tubes [5].

Having gained confidence in the presented analysis a parametric study of the interaction
problem is carried out. In Fig. 14 the moment-pressure interaction stability diagrams are drawn
as a function of DIt for 0'0, E and n constant. The corresponding curvature-pressure interaction
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Fig. 12. Comparison between experimental and theoretical results for steel pipes.
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Fig. 14. Moment-pressure interaction for different at (inelastic case).

diagrams are presented in Fig. 15. Unlike the elastic case a strong dependence on Dlt is
observed in both cases. For lower DI t plastic effects force an early deviation from the elastic
cases.

The yield stress is varied in Figs. 16 and 17 keeping Dlt and n constant. Clearly any
reduction of the yield stress drastically reduces the limit values. The strain hardening parameter
n is varied in Figs. 18 and 19 with the other parameters kept constant. Its effect however is less
significant than that of the yield stress.
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